

Pergamon Tetrahedron Letters 42 (2001) 8693–8696

TETRAHEDRON LETTERS

A novel approach towards the stereoselective synthesis of 2-azido-2-deoxy--D-mannosides

Remy E. J. N. Litjens, Michiel A. Leeuwenburgh, Gijsbert A. van der Marel and Jacques H. van Boom*

> *Leiden Institute of Chemistry*, *PO Box* 9502, 2300 *RA Leiden*, *The Netherlands* Received 24 August 2001; accepted 5 October 2001

Abstract—Low temperature mannosylation of glycosyl acceptors under the agency of *S*-(4-methoxyphenyl) benzenethiosulfinate (MPBT) and trifluoromethanesulfonic anhydride (Tf₂O) with *p*-methoxyphenyl 2-azido-3-*O*-benzyl-4,6-*O*-benzylidene-2-deoxy-1thio--D-mannopyranoside, readily available from D-mannosamine hydrochloride, affords 2-azido-2-deoxy-D-mannosides with high β-selectivity in good yields. © 2001 Elsevier Science Ltd. All rights reserved.

In 1989, Kulaev et al.¹ reported that the bacteriolytic complex lysoamidase, isolated from a bacterium of the genus *Xanthomonas*, is highly efficient in combating external infectious diseases caused by Gram-positive bacteria. Structure analysis revealed^{$\dot{2}$} that the high molecular mass (1300 kDa) acidic polysaccharide **1** with the following trisaccharide repeating unit constitutes the main component of the bacteriolytic enzymatic preparation. It was also established³ that the activity of lysoamidase is significantly stabilized by the interaction of the bacteriolytic enzymes,⁴ which only amount to 2% of the total mass, with the acidic polysaccharide **1**. With the ultimate goal to study in depth the interaction of the lysoamidase enzymes with well-defined fragments of the linear polysaccharide **1**, we report here our preliminary results in preparing dimers containing an orthogonally protected 2-azido-2 deoxy-β-D-mannopyranosyl moiety, which will serve as a progenitor for the β-linked 2-acetamido-2-deoxy-Dmannuronic acid (β-D-Man*p*NAcA) unit in **1**.

$$
\rightarrow 3)-\beta-D-GlcpNAc-(1 \rightarrow 4)-\beta-D-ManpNAcA-(1 \rightarrow 3)-\alpha-L-GalpNAcA-(1 \rightarrow 4)
$$

1
0Ac

Keywords: β-mannosidation; *p*-methoxyphenyl 2-azido-3-*O*-benzyl-4,6-*O*-benzylidene-2-deoxy-1-thio-α-D-mannopyranoside; acidic polysaccharide.

Of the methods thus far developed for the introduction of the β -ManNAc motif, the use of the 2-(benzoyloxyimino)-2-deoxy-α-D-*arabino*-hexapyranosyl bromide 2 (see Fig. 1) as a glycosyl donor^{5,6} proved to be superior, in terms of easy accessibility and β -selectivity, to the originally proposed 2-azido-2-deoxy-x-D-mannopyranosyl bromides **3a**,**b**. ⁷ On the other hand, the methodology involving the *a posteriori* introduction of the azido function via S_N 2-substitution at C-2 in β -linked glucosides⁸ was very rewarding in the elaboration of the --ManNAc element in the repeating unit of *Streptococcus pneumoniae* 19F capsular polysaccharide.^{9,10}

Recently, Crich and Sun¹¹ attained a high β : α ratio and good yield of D-mannosides by activation of 2,3-di-*O*alkyl-4,6-*O*-benzylidene-1-thio- α -D-mannosides $4a$, b at low temperature with in situ generated phenylsulfenyl

Figure 1.

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: $S0040 - 4039(01)01880 - 9$

^{*} Corresponding author. Tel.: +31 71 5274274; fax: +31 71 5274307; e-mail: j.boom@chem.leidenuniv.nl

triflate (PhSOTf) and subsequent addition of glycosyl acceptors. The mannosidation protocol could be improved substantially¹² from a practical point of view using the combination of crystalline and stable *S*-(4 methoxyphenyl) benzenethiosulfinate (MPBT) and trifluoromethanesulfonic anhydride (Tf_2O) , instead of PhSOTf, in the transformation of donors **4a**,**b** into the α -mannosyl triflates, which are proposed^{11–13} to play a decisive role¹⁴ in β -product formation. It was envisaged that condensation of the similarly protected ethyl- (phenyl) 2-azido-2-deoxy-1-thio-mannosides **5a**,**b** with glycosyl acceptors by the latter glycosidation approach would give access to 2-azido-2-deoxy- β -D-mannosides.

The synthesis of the requisite thiomannosides **5a**,**b** via a six-step sequence from commercially available D-mannosamine hydrochloride **6** is presented in Scheme 1. For example, subjection of $\bf{6}$ to diazo transfer reaction¹⁵ and subsequent acetylation led to fully acetylated derivative **7** as a mixture of anomers. Treatment of **7** with ethanethiol in the presence of BF_3 ·OEt₂ followed by deacetylation gave ethyl 1-thio- α -D-mannopyranoside **9b**. Acetalisation of **9b** with benzaldehyde dimethylacetal under the agency of HBF_4 ·OMe₂ afforded, after benzylation, ethylthio donor **5b** in an overall yield of 50% based on **6**.

In the first instance, phenylthio donor $5a$ in dry CH_2Cl_2 was activated for 5 min at -60° C with MBPT/Tf₂O in the presence of 2,6-di-*tert*-butylpyridine (DTBMP). Addition of diacetone-D-galactose **11** and analysis of the mixture, after additional stirring for 10 min at −60°C,

Scheme 1. *Reagents and conditions*: (i) TfN₃, K₂CO₃, CuSO₄ (cat.), H₂O, MeOH, CH₂Cl₂; (ii) Ac₂O, DMAP (cat.), pyridine, 7: 88% (two steps); (iii) EtSH, BF₃·OEt₂, CH₂Cl₂, 35°C, **8a**: 55%; (iv) PhSH, BF₃·OEt₂, CH₂Cl₂, 35°C, **8b**: 70%; (v) *p*-OMePhSH, BF₃·OEt₂, CH₂Cl₂, 35°C, 8e: 59%; (vi) KO'Bu, MeOH, 9a/b/e: quant.; (vii) PhCH(OMe)₂, HBF₄·OMe₂, DMF, 10a: 88%, 10b: 91%, **10e**: 88%; (viii) BnBr, NaH, DMF, **5a**: 96%, **5b**: 90%, **5e**: 97%.

Table 1. Mannopyranoside formation of 4,6-*O*-benzylidene protected donor **5e** with acceptors **11** to **14**

Entry	$\mathop{\mathrm{Donor}}$	Acceptor	Product	Yield $(\%)^{a,b}$	Ratio α : β^a	$^{1}J_{\text{Cl,HI}}$ (Hz)	$\frac{1}{J_{\text{Cl,HI}}}$ (Hz)
						α -anomer	β -anomer
$\mathbf{1}$	N ₃ Ph ₂ SO- BnC S-p-OMePh $5\mathrm{e}$	\overline{M} \circ ${\bf 11}$	15	83	1:2.1	169.4	160.2
2°	5e	Ю, BzO- BzC BzO _{OMe} ${\bf 12}$	16	87	1:4	171.2	159.5
$\mathbf 3$	5e	QBz Ņ3 HO. $C_{14}H_{29}$ OBz 13	17	59	Only β	$\ddot{}$	$160.2\,$
$\overline{\mathbf{4}}$	${\bf 5e}$. ``O` нo	18	61	Only β	\blacksquare	158.0
		14					

³Total yield and α:β ratio were assigned after separation of the anomers. ^bYield based on 5e. ⁶α:β ratio determined by ¹H-NMR spectroscopy.

revealed the presence of starting materials and no trace of the expected coupling products. Moreover, executing the activation step at higher temperatures (−60−20°C) or prolonged reaction times was also not successful. In addition, glycosidation at temperatures above −20°C led to intractable mixtures of products. Similar results were also obtained in subjecting the ethylthio donor **5b** to the same glycosidation conditions.

The failure of activating donors **5a**,**b** at low temperature can be explained¹⁶ by taking into consideration that the nucleophilicity of the sulfur atom at the anomeric center will be decreased due to the electron withdrawing effect of the 2-azido group.¹⁷ It was therefore, envisaged that replacement of the anomeric functions in **5a**,**b** by the more electron donating *p*-methoxyphenylthio group would have a beneficial effect on the activation step. Indeed, it turned out that activation of donor **5e**, ¹⁸ prepared in a similar fashion as **5a**,**b** (Scheme 1), for 15 min at −35°C followed by the addition at −60°C of diacetone-D-galactose **11**, led to the expected disaccharide **15** (entry 1 in Table 1)¹⁹ as a mixture of anomers in good yield within 10 min. The stereochemistry of the mannosidic bond in the resulting individual anomers was firmly ascertained 20 on the basis of the C1–H1 heteronuclear one-bond coupling constants $(^1J_{\text{Cl},\text{H1}})$. An increase of β -selectivity was observed (entry 2) in the glycosylation of methyl 2,3,4- *O*-benzoyl-glucopyranoside **12** with **5e**. On the other hand, condensation of **5e** (entry 3) with the relatively more inert primary alcoholic function in the sphingosine derivative **13** led to the exclusive formation, although in moderate yield, of the 2-azido-2-deoxy- β mannoside **17**. A similar result was observed (entry 4) in the glycosidation of **5e** with the secondary hydroxyl group in acceptor **14**. At this stage, it is also of interest to note that the stereochemistry and yield of the mannosidations summarized in Table 1 do not deviate substantially from those observed earlier by Crich and Smith using the corresponding α -D-thiomannoside 4b as donor. However, the β -selectivity of the condensation of **5e** with acceptor **12** (entry 2) is less pronounced in comparison with the nearly exclusive formation of the β -mannoside resulting from the coupling of the corresponding partially acetylated glucose acceptor with phenyl α -D-thio-mannoside **4b**.

In conclusion, the results thus far obtained indicate that the readily accessible and orthogonally protected *p*methoxy-phenyl 2-azido-2-deoxy-α-D-mannoside **5e** shows promise in the construction of the $(1\rightarrow 3)$ *cis*linked Man*p*NAcA structural element of the target molecule **1**. Moreover, in analogy with the earlier observed high β -mannoselectivity of the ethyl(phenyl) sulfoxide¹¹ 4c and trichloroacetimidate²¹ 4d donors, it would also be of interest to examine the disarming effect of the 2-azido group on the low temperature activation of the corresponding 2-azido-2-deoxy donors **5c** and **5d**. Both aspects are currently under investigation and will be reported in due course.

Acknowledgements

The authors thank Fons Lefeber and Cees Erkelens for recording the NMR spectra and Hans van den Elst for performing the mass spectrometric analyses.

References

- 1. Kulaev, I. S.; Severin, A. I.; Stepnaya, O. A.; Kruglaya, O. V. *Biokhimiya* **1989**, 54, 201.
- 2. Likhosherstov, L. M.; Senchenkova, S. N.; Knirel, Y. A.; Shashkov, A. S.; Shibaev, V. N.; Stepnaya, O. A.; Kulaev, I. S. *FEBS Lett*. **1995**, 368, 113.
- 3. Stepnaya, O. A.; Severin, A. I.; Kulaev, I. S. *Biokhimiya* **1986**, 51, 1117.
- 4. Stepnaya, O. A.; Ledova, L. A.; Kulaev, I. S. *Bio*-*chemistry* (*Moscow*) **1993**, 58, 1523.
- 5. Kaji, E.; Lichtenthaler, F. W.; Nishino, T.; Yamane, A.; Zen, S. *Bull*. *Chem*. *Soc*. *Jpn*. **1988**, 61, 1291.
- 6. Kaji, E.; Lichtenthaler, F. W.; Osa, Y.; Takahashi, K.; Zen, S. *Bull*. *Chem*. *Soc*. *Jpn*. **1995**, 68, 2401.
- 7. Paulsen, H.; Lorentzen, J. P. *Carbohydr*. *Res*. **1984**, 133, $C1$.
- 8. Sato, K.-I.; Yoshimoto, A. *Chem*. *Lett*. **1995**, 39.
- 9. Nilsson, M.; Norberg, T. *J*. *Chem*. *Soc*., *Perkin Trans*. 1 **1998**, 1699.
- 10. Bousquet, E.; Khitri, M.; Lay, L.; Nicotra, F.; Panza, L.; Russo, G. *Carbohydr*. *Res*. **1998**, 311, 171.
- 11. Crich, D.; Sun, S. *Tetrahedron* **1998**, 54, 8321.
- 12. Crich, D.; Smith, M. *Org*. *Lett*. **2000**, 25, 4067.
- 13. Crich, D.; Sun, S. *J*. *Am*. *Chem*. *Soc*. **1997**, 119, 11217.
- 14. In a recent comparative study (see Ref. 21) towards the β-selective low temperature glycosidation of 4,6-*O*-benzylidene protected mannopyranosyl trichloroacet-imidate **4d** and the similarly protected α -D-mannopyranosyl *S*ethyl sulfoxide, a twist-boat type intermediate was proposed as the glycosylating species. This intermediate was believed, for stereo-electronic and steric reasons, to favor --product formation.
- 15. Alper, P. B.; Hung, S.-C.; Wong, C.-H. *Tetrahedron Lett*. **1996**, 37, 6029.
- 16. Zuurmond, H. M.; Van der Laan, S. C.; Van der Marel, G. A.; Van Boom, J. H. *Carbohydr*. *Res*. **1991**, 215, C1.
- 17. Biffin, M. E. C.; Miller, J.; Paul, D. B. In *The Chemistry of the Azido Group*; Patai, S., Ed.; John Wiley & Sons, 1971; p. 205.
- 18. All new compounds were fully characterized by ${}^{1}H$, ${}^{13}C$ NMR and MS. Relevant data of donor $5e$: ¹H NMR δ _H (200 MHz, CDCl₃): 7.58–7.30 (m, 12H), 6.86 (d, 2H, *J* 6.5 Hz), 5.63 (s, 1H), 5.26 (bs, 1H), 4.82 (AB, 2H), 4.35 (m, 1H), 4.20 (m, 4H), 3.82 (t, 1H, *J* 10.2 Hz), 3.77 (s, 3H). ¹³C NMR δ_C (50.1 MHz, CDCl₃): 160.19, 137.93, 137.51, 135.14, 129.01, 128.53, 128.26, 127.89, 127.65, 126.19, 122.77, 114.94, 101.60, 87.89, 79.25, 75.88, 73.34, 68.30, 65.03, 63.88, 55.23. MS (ESI): *m*/*z*=528.4 (M+ Na⁺.
- 19. General experimental procedure for the preparation of 2-azido-2-deoxy-D-mannosides **15**–**18**: To a stirred solution of thiomannoside **5e** (0.20 mmol), MPBT (66 mg, 0.25 mmol), DTBMP (102 mg, 0.5 mmol) and activated 3 A powdered molecular sieves in anhydrous dichloro-

methane (2.5 mL) at −35°C under argon was added Tf_2O (70 μ L; 0.4 mmol). After 15 min, the reaction mixture was cooled down to −60°C and subsequently a solution of the glycosyl acceptor (0.40 mmol) in anhydrous dichloromethane (2 mL) was added dropwise. The reaction mixture was stirred for 10 min at −60°C and then quenched with methanol, warmed to room temperature, filtered, washed with saturated aqueous NaHCO₃, followed by brine, dried (Na_2SO_4) and concentrated under reduced pressure. The anomers where then separated, if appropriate, by silica gel chromatography (ethyl acetate/ toluene).

- 20. Bock, K.; Pedersen, C. *J*. *Chem*. *Soc*., *Perkin Trans*. ² **1974**, 293.
- 21. Weingart, R.; Schmidt, R. R. *Tetrahedron Lett*. **2000**, 41, 8753.